Archives

  • 2018-07
  • 2018-10
  • 2018-11
  • 2019-04
  • 2019-05
  • 2019-06
  • 2019-07
  • 2019-08
  • 2019-09
  • 2019-10
  • 2019-11
  • 2019-12
  • 2020-01
  • 2020-02
  • 2020-03
  • 2020-04
  • 2020-05
  • 2020-06
  • 2020-07
  • 2020-08
  • 2020-09
  • 2020-10
  • 2020-11
  • 2020-12
  • 2021-01
  • 2021-02
  • 2021-03
  • 2021-04
  • 2021-05
  • 2021-06
  • 2021-07
  • 2021-08
  • 2021-09
  • 2021-10
  • 2021-11
  • 2021-12
  • 2022-01
  • 2022-02
  • 2022-03
  • 2022-04
  • 2022-05
  • 2022-06
  • 2022-07
  • 2022-08
  • 2022-09
  • 2022-10
  • 2022-11
  • 2022-12
  • 2023-01
  • 2023-02
  • 2023-03
  • 2023-04
  • 2023-05
  • 2023-06
  • 2023-07
  • 2023-08
  • 2023-09
  • 2023-10
  • 2023-11
  • 2023-12
  • 2024-01
  • 2024-02
  • 2024-03
  • 2024-04
  • br Conclusions br Acknowledgment The authors would like to g

    2020-08-06


    Conclusions
    Acknowledgment The authors would like to give their acknowledgement to the support from the National Natural Science Foundation of China and the Fundamental Research Funds for the Central Universities of China.
    Introduction In recent years a new trend has emerged in the design and verification of spacecraft. Rapid advances within the field of integrated electronics have enabled the use of inexpensive and highly performant electronic components, which have also found their way into the space industry. These so-called Commercial off-the-Shelf (COTS) components allow the constructions of spacecraft, specifically satellites, at significantly lower costs and development times. This has allowed small, interwoven teams (as typically found within university environments) to design nanosatellites from the initial concept stages to the final stages within drastically reduced time frames. These nanosatellites typically have a mass of less than 10kg and occupy a volume of less than 8.4dm3. Indeed, the popularity of this approach cannot be denied, with more than 90 different nanosatellites being launched in 2013 alone, with the number expected to increase even further in the following years [1]. Though their Lauric Acid lie in university-based education and technology demonstration missions, their usages since their inceptions have evolved into including science, remote sensing, telecommunication, and even commercial interests [2]. Indeed, perhaps the most important aspect of the nanosatellite approach is the possibility of launching a multitude of nanosatellites as a single satellite constellation, whereby these tasks previously thought of as too expensive could be accomplished (e.g. on-demand Lauric Acid remote sensing, global monitoring, other real-time satellite applications). Though these limitations have already resulted in the failure of a couple of nanosatellite missions [3], their use in primarily Low Earth Orbit (LEO) meant that most missions proceeded without major problems even with the potential lack in reliability. However, talks are already underway to bring the nanosatellite platforms along even further by using them for interplanetary missions. In order for nanosatellites to still be practical beyond LEO, where the radiation environment and operational constraints are much harsher, one method would be to modify their designs to be more in line with how larger satellites are designed and built [4]. The proposed FDIR technique is presented in the following format: Section 2 contains a survey of typical orbits of interest with regard to the radiation environment found in them, which is contrasted with a LEO orbit. Additionally, how the requirements for the satellite system can be estimated is presented by examining this radiation environment. Section 3 contains a detailed description of the proposed FDIR scheme, including the designs of the current limiters, watchdog timers, special consideration for logic design, and the implementation of more complex FDIR schemes on top of the one presented. Section 4 then analyzes how radiation affects the specific components of the implementation and how the proposed FDIR policy copes with these effects. Finally, Section 5 presents some of the more important performance characteristics, obtained by measuring an implementation of the proposed FDIR policy.